
 1

Tor Skeie

ABB Corporate Research

Bergerveien 12

N-1375 Billingstad

Norway

Svein Johannessen

ABB Corporate Research

Bergerveien 12

N-1375 Billingstad

Norway

Øyvind Holmeide

OnTime Networks

Gladsvei 20

N-0489 Oslo

Norway

Since its invention at Xerox PARC in 1973, the Ethernet technology has proven to be both

robust and adaptable. Through several giant evolution steps Ethernet has become an al-

most ubiquitous communication technology, spanning from enterprise or local area net-

working through high performance backplane interconnects (a very recent initiative) to

metropolitan (telecommunication) networking. Being nimble enough to maneuver into

new application areas, it is now making inroads in factory communication.

Automation systems are, however, different from many of the other application areas

mentioned, first and foremost since they require real-time performance from the network

technology. In this article we will look at some critical aspects of Ethernet as an automa-

tion network, usually referred to as Industrial Ethernet. More specifically, we focus on

the application-to-application delay and jitter characteristics of such networks. We show

the importance of taking control of the latency in the station nodes, since the main com-

munication delays are inside the nodes, and present different solutions for controlling

these delays. Our results show a significant evolution in the applicability of real-time

Ethernet based IP communication, which is now adequate even to demanding automation

applications.

I. Introduction
In order to keep pace with the computer evolution and the increased burden imposed

on data servers, application processing, and enterprise computing created by the popu-

larity of the Internet, we have in recent years seen several new technologies proposed

for high performance interconnect (embedded) networking [1][2][3]. Common for this

body of technologies is that they rely on point-to-point links interconnected by off-

the-shelf switches. The same is true for the Ethernet technology recently being subject

of a massive movement from hub- and cable based Ethernet to switched Fast Ethernet

in office automation. Through several giant evolution steps Ethernet has become an

almost ubiquitous communication technology, spanning from enterprise or local area

networking through high performance backplane interconnects to metropolitan (tele-

communication) networking. Being nimble enough to maneuver into new application

areas, it is now making inroads in factory communication. Introducing switched

Ethernet in conventional automation has several advantages, the most important being

[4]:

 The original Ethernet bus arbitration scheme is no longer necessary. From the

node, it looks as if the network is never busy. There is no longer any collisions or

retransmissions, increasing the predictability of the network.

 It is possible to connect nodes with different speeds to the switch. The switch will

negotiate the highest possible connection speed to each node. It is entirely possi-

Timeliness of Real-time IP Communication in

Switched Industrial Ethernet Networks

 2

ble for the switch to receive a packet at 10Mbit/s on one port and send it out on

another port at 100Mbit/s.

 In contrast to the hub-based Ethernet, it is possible for one node to send and re-

ceive data simultaneously if it is configured to do so. This is called a full duplex

connection; the original Ethernet could only run in half duplex (send or receive,

but not both).

The switches have a couple of disadvantages, though [5]:

 Because each packet is completely received before it is moved to the output port,

the switch delays the packet by the total packet duration. This technique is called

store-and-forward switching and is used by most of the Ethernet switches on the

market today. The store-and-forward principle enables switches to discard packets

if CRC (Cyclic Redundancy Check) inconsistency is detected
1
. If the output port

is busy, the delay will increase even more - by the amount of time it takes for the

output port to be available again. For a survey of switched-based networking prin-

ciples, see [6].

 Multicasts have no specific destination and are therefore copied to every output

port. This reduces the efficiency of the switch enormously. In order to cope with

this problem, a number of intelligent switches (often called managed switches)

have been developed.

In this paper we will discuss what changes switched Ethernet will bring to automation

networks, especially with respect to performance, delays and jitter (variations in the

delay). In this context we shall address the application-to-application latency embed-

ding also the delay through a complete TCP/UDP/IP stack in the experiments. This is

in contrast to previous work on industrial Ethernet that mainly has studied the delay

properties of the network infrastructure. In our analysis of a demanding automation

system one main finding is that 80-90% of the end-to-end delay is spent within the

station nodes. This strongly pinpoints that a Quality of Service (QoS) mechanism

should also be introduced in the nodes and as such has been the missing link with re-

spect to having end-to-end deterministic properties. In this paper, we take on such a

challenge. We propose a generic concept for introducing a prioritization mechanism

into the protocol stack that complies with the IEEE 802.1D standard. The concept has

been implemented in the VxWorks real-time operating system environment and

evaluated by real-world measurements showing promising results.

The paper emphasises IP (Internet Protocol) communication and use of standard

Ethernet for automation networking. This gesture has also been embraced by the In-

dustrial Ethernet initiatives EtherNet/IP [7], IDA (Interface for Distributed Automa-

tion) [8], and FF HSE (Foundation Fieldbus High Speed Ethernet) [9] – Svein, stem-

mer dette for IDA?. It is, however, beyond the scope of this article to go into details of

these standards, since they all aim to administer the interface between automation sys-

tems and the TCP/UDP/IP protocol family.

Another body of real-time Ethernet based systems, on the other hand, use special pro-

tocols and optimized stacks. This is the case for ETHERNET Powerlink [10], Ether-

CAT (Ethernet for Control Automation Technology), and PROFINET IRT (Isochro-

1
 Some Ethernet switches rely on the cut-through switching principle, where forwarding of a packet

starts as soon as its destination is known (and the output port is available), before the whole packet is

arrived. Cut-through switching may reduce the end-to-end latency, but does not allow for per-hop CRC

consistency checking.

 3

nous Real-Time). These systems implement a master-slave (fieldbus) protocol on top

of Ethernet for controlling the access to the network. The problems with the stacks as

referred in this paper do not exhibit the same magnitude in those systems.

The remainder of the paper is structured as follows. Section II describes previous

work on industrial Ethernet. We have organized this section with respect to applied

research methods. In section III we perform a feasibility study of Fast Ethernet with

respect to substation automation, where the analysis is done by full-scale simulations.

Section IV presents a generic concept for introducing a prioritization mechanism into

the protocol stacks and give arguments for applying these mechanisms in automation

networks in order to obtain predictable transfer end-to-end. Finally, in section V we

conclude and summarize.

II. Previous Work on Industrial Ethernet
In the last 3-5 years a large amount of work has been done on studying the applicabil-

ity of Fast Ethernet for industrial usage. There are three basic techniques for such

network performance evaluation: analytical modelling, simulations, and real life

measurements [11]. All these techniques have been applied, with varying degrees of

success.

Before diving into this discussion we should bear in mind that the traffic pattern pro-

duced by industrial devices normally consists of periodic data (typically sampling

data being subscribed by controller nodes) with temporal constraints, as well as aperi-

odic messages (e.g. a controller sending trip commands to actuators) also being time-

critical. In addition, there might be other aperiodic data sources such as file transfer,

causing a resulting “bursty” traffic pattern on automation networks.

The Analytical Method: Network Calculus

Network Calculus has become a widely accepted analytical technique for evaluating

the real-time performance of communication networks – in particular, it has been used

for ATM networks [12] in the Internet community, and more recently also for assess-

ing the real-time properties of Fast Ethernet in context of industrial use ([13], [14],

[15], [16] and [17]) since it can model both periodic and aperiodic traffic. Traditional

queuing theory deals with stochastic processes and probability distributions (such as

the Poisson, Binomial, and Bernoulli processes), and do not very well model the peri-

odic traffic generated by automation devices [13].

Network Calculus was first introduced by Cruz in the seminal papers [18] and [19],

and describes a theory for obtaining delay bounds and buffer requirements. The con-

cept assumes that the data entered into the network satisfies a burstiness constraint

function (this means that also aperiodic traffic would have to be bounded). Tradition-

ally, the traffic is modeled by the leaky bucket principle being characterized by the (σ,

ρ) parameters, where σ is the maximum traffic burst size (in bits) and ρ is the long-

term average traffic rate (bits/s). In [18] Cruz deduces the delay upper bound when

crossing one single switching element, while he in [19] derives the end-to-end delay

of a networked topology. Later Boudec and Thiran refined the calculus theory trans-

posing it to an algebraic model. The results were the same; however, it became more

elegant for practical use [20]. In [13] Georges et. al. proposed a general representation

for modeling a switched Ethernet network, and presented a Network Calculus formula

enabling the calculation of a maximum end-to-end delay for different industrial com-

 4

munication scenarios. Georges et. al. applied the deduced formula to a star and line

topology in [17].

J. Jasperneite et. al. also proposed an analytical model of switched Ethernet based on

the Network Calculus theory, where the FCFS (First Come, First Served) and PQ

(Fixed Priority Queuing) queuing principles were considered [14]. Furthermore, they

compared results from the analytical model with simulations for the star and line to-

pologies, where they observed a significant deviation between the evaluation tech-

niques (the simulation experiments showed a lower delay bound than the analytical

analysis). The authors argued that this might stem from an incomplete correlation be-

tween the traffic patterns entered into the analytical and simulation models, respec-

tively. Koubaa and Song, however, in [21] proposed that any discrepancy between

Network calculus and evaluation by simulations probably was the consequence of a

too pessimistic upper delay bound given by the former – we will come back to this

issue below.

If the delay bounds shall be met in a Network Calculus based regime, the traffic pat-

tern must satisfy the burstiness constraints (leaky bucket). This is the subject of the

paper from Kweon et al., who proposed an adaptive traffic smoothing concept to

regulate the traffic entered into a shared Ethernet network, yielding soft real-time

properties [16]. The traffic smoother first gives real-time packets priority over non-

critical packets to eliminate contention within each end-node, and shapes non-critical

streams to reduce collisions with real-time packets from other nodes. It was shown

that this smoother decreases the packet-collision rate on a conventional (HUB based)

Ethernet network. Loeser and Haetig also proposed a traffic shaper (smoother) for

bounding the traffic [15], based on the Network Calculus work of Boudec and Thiran

[20]. This shaper has been implemented as a thin middleware-layer in a real-time op-

erating system environment and evaluated with respect to switched Ethernet. Choi et.

al., however, took a different approach to meeting delay bounds; instead of shaping

the traffic as proposed by Kweon and Loeser, they considered an admission control

approach for regulating the traffic relying on probabilistic analysis [22]. They consid-

ered two Quality-of-Service (QoS) parameters, the end-to-end delay and the minimum

probability that this delay is not violated. When a host posts a new request, it first

broadcasts the flow information so that all the end-nodes know the requirements. The

issue of admission controlling has been used in the Internet and Interconnection net-

working community for years to achieve QoS guarantees [23][24][25][26].

Proving Determinism: Worst-Case Scheduling Analysis

The other main analytical approach for computing the upper delay bounds in switched

Ethernet networks is worst-case scheduling analysis, which also has gained accep-

tance within the industrial community ([27], [21], [28] and [29]). This technique is

based on the seminal work of Lui and Layland, who presented a theory for determin-

ing the worst-case response time for a set of periodic tasks with fixed priority [30].

This theory has later been generalized by Joseph and Pandya [31] and Lehoczky [32].

The fundamental issue here is that in order to provide a bounded response time in a

distributed real-time system with respect to either a computer task or a message

transmission through a network, it is vital to allocate resources that correlate with the

temporal constrains of the different sources (task execution or packet transmission).

Song et. al. applied the scheduling theory proposed by Joseph et. al., and derived an

expression for computing the worst-case latency of a switched Ethernet network for

multiple priority periodic traffic [27]. In this contribution the authors also show that

 5

traditional queuing theory can be used for soft real-time guarantee analysis as regards

aperiodic traffic (where both the Poisson and Binomial processes were assessed) in a

single priority regime, i.e. the probability that a message will not have to wait for

more than t time units in a switch.

Hoang and Jonsson studied an extended switched Ethernet network concept, which

was extended in the sense that the switch (seen as a non-standard intelligent Ethernet

switch) is responsible for exerting admission control (by means of added software), as

well as a modified protocol stack is considered being an extra layer between the

TCP/IP and MAC layers for performing deadline partitioning [28]. When an end-node

wants to establish a real-time channel (connection), it sends a request packet with

<source, destination> nodes MAC/IP addresses to the switch, which will assess if the

request can be admitted (i.e. whether the real-time deadlines can still be guaranteed).

Scheduling-based analysis is applied for evaluating the networks concept, where ear-

liest deadline first (EDF) is the specific scheduling method used both in the end-nodes

and switches. In [29] Fan et. al. introduced multicast communication into the ex-

tended network concept proposed by Hoang and Jonsson, where they assessed the

gain of using an intelligent Ethernet switch [29].

In [21] Koubaa and Song compared the Network Calculus and Scheduling-based

models ability to compute precise upper delay bounds (for periodic traffic), by using

simulations as reference. They claimed that both these analytical models overestimate

(give too pessimistic) worst-case latency, Network calculus being the most pessimis-

tic. On the other, Network Calculus is less computationally demanding and in that re-

spect can be suitable for on-line assessment. Koubaa and Song also proposed a hybrid

model between Network Calculus and Scheduling-based analysis by taking profit of

advantages in both techniques in order to achieve a more accurate upper delay bound.

The new approach has been evaluated and shown to be more suited for worst-case de-

lay analysis than the basic models.

The IT Method: Simulation

Evaluation by simulations is probably the most compelling generic technique for pre-

dicting network performance and has been used for decades by various research

communities, including the automation research field ([33], [34], [35], [36] and [37]).

Simulation as an evaluation method is well understood and debated in the literature

[11].

details

and require fewer assumptions, and should consequently be closer to reality for larger

and complex systems. Hence, when assessing the performance of communication

networks, simulations should at least be one of the chosen evaluation techniques.

In [34] Jasperneite and Neumann deployed simulations for predicting the performance

of switched Ethernet with respect to factory floor. In the study they considered the

star and bus-line topologies and had a workload model that comprised both cyclic and

acyclic data transmission, including aperiodic transmission of files. It was assumed

that the processing time in the end-nodes was zero. In this work Jasperneite and Neu-

mann concluded that switched Ethernet might be applicable for a large body of auto-

mation applications; however, it might not be good enough for time synchronization.

Dolejs and Hanzalek studied the real-time properties of conventional Ethernet by

simulations and conclude that hub-based Ethernet can only be used for mission-

 6

critical applications when network load is kept very low (i.e. having a small collision

probability) [35]. Still such an approach can only be used for achieving soft real-time.

Similar to the contributions [15], [16] and [22], Bello et. al. proposed traffic smooth-

ing to regulate the network access of the end-nodes in order to reduce (control) the

packet-collision probability of conventional Ethernet [37]. They present a dynamic

traffic-smoothing concept - dynamically in the sense that each end-station gets a por-

tion of the bandwidth according to the current workload on the network. The work-

load is collected for a pre-established period of time, where different load metrics are

considered (throughput, number of collisions, and delay time). The smoothing con-

cept was evaluated by simulations, and it was shown to improve the real-time proper-

ties of Ethernet and the network performance in general. Wang and Ravindran fo-

cused on MAC-layer scheduling, and devised a heuristic soft real-time packet sched-

uling algorithm [36]. End-to-end timeliness requirements were specified using Jen-

sen’s Time Utility Functions [38]. A Time-Utility Function is semantics for specify-

ing the utility to the system for completing an application within its required activity

completion time. For example, assume a control unit that processes batches of acqui-

sitioned sensor data, after a certain critical time the utility of such a function nears

zero, because newer sensor data has probably arrived. The objective of completing as

many activities as possible at their optimal time can be seen as maximizing the

summed utility obtained by activity completions. Wang and Ravindran’s algorithm

scheduled outgoing packets from source nodes and switches to maximize aggregate

packet utility, where the performance was evaluated by simulations.

III. Simulating a Demanding Automation System
In the energy distribution world, a substation is an installation where the energy is

combined, split or transformed. A Substation Automation (SA) system is dedicated to

the monitoring and protection of the primary equipment of such a substation and its

associated feeders. In addition, the SA system has administrative duties such as con-

figuration, communication management and software management. And not least, the

SA system is known to be one of the most bandwidth-intensive and demanding real-

time applications in existence.

In this section we shall investigate whether Ethernet has sufficient performance to

meet the real-time demands of substation automation. More precisely, the evaluation

is carried out with respect to switched Fast Ethernet and UDP/IP as the time-critical

protocol. The requirement is an end-to-end response time of better than 1ms. The mis-

sion critical traffic will coexist with non-critical traffic seen as TCP/IP communica-

tion. This study should also analyze the impact of the station nodes’ processing power

(in number of IP packets/sec) on the end-to-end delay.

Traditional hierarchical system and the vision

Traditionally, the functionality of SA systems has been logically allocated on three

distinct levels called the station, bay and process levels (a classical hierarchical sys-

tem architecture).

1. The process level functionality is more or less an interface to the primary equip-

ment. Typical functions specified at this level are data acquisition (sampling) and

issuing of I/O commands.

2. The bay level functionality is concerned with coordinated measurement and con-

trol relating to a well-defined subpart of a substation (usually denoted as a bay).

 7

3. At the topmost station level we find the functions that protect and control the en-

tire substation or larger parts of it. As part of the station level functions we often

also find HMI (Human Machine Interface) as well as linkages to remote control

centers.

Traditionally, the physical realization of SA systems has mirrored the logical organi-

zation of the functionality both from a device and network connectivity prospective.

Figure 1 shows a three level network structure formed by the Station, Interbay and

Process buses (SA systems where the Station and Interbay buses are merged also ex-

ist). The communication within SA systems is crucial from the point that the func-

tionality has a need for very time-critical data exchange. Examples of hard time-

critical data are current and voltage sampling data are sent from the process interface

nodes to the controllers on the bay level, and trip commands going in the opposite di-

rection from the controller nodes to circuit breakers (actuators) responding on a cur-

rent/voltage unbalance in the substation.

SIEMENS

SEG

ELK 14EXK 01 ELK 34 PASS M1PASS M0 PASS M2

P
IS

A
 A

P
IS

A
 B

E

E

& &

P
IS

A

Process Bus

P
IS

A
A

P
IS

A
BU/I-Combisensor

Station Bus

to Network
Control
Center

Interbay Bus

Integrated
Control and

Protection

Bay
Control,
Feeder

Protection,
Busbar

Protection,
Metering

with
additional
non ABB
products

CB DriveDS/ES/FES/
CDES Drive

Figure 1. Modern substation automation system realizing a process bus for real-time

traffic.

The SA business is migrating towards open solutions. This is a radical change from

the traditional systems relying entirely on proprietary solutions. The vision is to

achieve interoperability between products from different vendors on all levels within

the substation automation field. The usage of standards and adoption of off-the-shelf

technologies are the key instruments to reach the interoperability goal. A proof of the

new trend is the IEC 61850 standard on Communication networks and systems in sub-

stations issued by Technical Committee 57 [39]. For various economic and standardi-

zation reasons the industry would like to get rid of the different (and usually incom-

patible) communication networks at the traditional SA levels, migrating to a single

all-encompassing network concept [40].

Just How Demanding Can That Application Be?

What we are talking about is control and protection equipment for the high-voltage

distribution substations. We are talking about wires that carry more than one hundred

thousand volts. In consequence we have a tough set of requirements:

 A data sampling rate of 1440 Hz (IEC TC57/ WG12, protection and control class

4, 60 Hz system).

 8

 Since everything is three-phase, we need three sets of measurements for each

measurement point.

 A typical setup has eight to twelve measurement points.

 The measurement data must be sent to multiple destinations (two to four destina-

tions).

 In addition to the measurement data we must be able to handle administrative da-

ta, trip data and file transfers.

A gross estimate of the amount of data traffic in the substation can be made by multi-

plying everything together and estimating the administrative overhead. Doing this

tells us that we will have about 140 000 packets per second on the substation network.

If a standard payload for the measurement data is 32 bytes with a total protocol over-

head of 60 bytes, a standard packet will be 736 bits. Multiplying this number by the

estimated number of packets per second gives an estimated data volume of about 103

Mbit/s – slightly more than the gross capacity of Fast Ethernet.

How to squeeze a large amount of data through Ethernet

Since the worst-case data volume is greater than Fast Ethernet can handle, you might

think that it is no use in investigating further. That would be wrong, since Ethernet

has several possibilities we have not even been looking at, as follows:

 Transmitting measurement data to multiple destinations at the same time (multi-

casting). This approach will reduce the data volume to about 30 Mbit/s.

 Letting one measurement node transmit measurement data for three phases instead

of one. This approach will reduce the data volume to about 50Mbit/s.

 Use switched Fast Ethernet. This approach will not reduce the data volume, but it

will increase the available data transfer bandwidth.

 Use Gigabit Ethernet. This is slightly more expensive, but has sufficient band-

width to easily handle the data volume.

Having several solutions available to us, we need to find out if at least one of them

will work in practice and then select the “best” (least expensive, fastest, most reliable)

of the workable solutions. Although we could have chosen one tentative solution after

another and run a test case for each of them, for the purpose of this article we will

concentrate on a somewhat mixed solution. Since the main difference (from a network

point of view) between a multicast solution and a standard solution is reduced net-

work traffic, we ignore multicast for now, and will use switched Fast Ethernet 100

Mbps.

Simulation Environment: OPNET

We will use simulations for analyzing the SA system, to be conducted as full-scale

experiments. There are several reasons for this. As discussed in [27][21], analytical

modelling has its limitations as the system to be evaluated becomes larger and more

complex. To establish solvable models one will in general have to do several simplifi-

cations and possibly unrealistic assumptions that may result in too pessimistic worst-

case latency. In this study we shall include the TCP/UDP/IP stack in the experiments,

and furthermore analyze the impact of the station nodes’ processing power (in number

of IP packets/sec) on the delay. As phrased earlier, this is hard to model analytically.

Essentially we want to test a requirement by simulations:

 9

Application-to-application latency 1 millisecond.

The quality of the simulations, however, depends on the quality of the simulation tool

itself, on the quality of the models used in the simulation, and the quality of the traffic

models used. In order to meet these expectations we deploy the OPNET simulator

[41]. OPNET is a commercial tool, originally developed at MIT in 1987, that today is

considered as the de-facto standard for predicting network performance and is widely

accepted both in academia and industry. Among recognized clients are 3Com Corpo-

ration, Cisco Systems, Hewlett Packard, and Intel Corporation that all use OPNET in

their development of new network components. Besides, a tremendous number of re-

search contributions have applied OPNET, including also automation papers as for

instance [14], [34] and [35].

OPNET provides an implementation of the most known data link layers, network lay-

ers, routing protocols, etc., including application layer models. In addition OPNET

offers a library of vendor device models. These are switch and router components im-

plemented in OPNET that have been calibrated to match the behavior of specific

products from different network providers. In our simulation experiments we use the

Nortel Networks Accelar 1200 64 port Ethernet switch, which is based on shared-

buffer architecture principles [41].

Simulating a switch-based “flat” SA network

Figure 2. The measurement set-up in the OPNET simulator

In this section we simulate an SA configuration modeled as a “flat” network, consist-

ing of a medium number of producer nodes (16) (called PISAs, “Process Interface for

Sensors and Actuators”) in the SA context (in next section we simulate a more com-

prehensive configuration). Those nodes shall transmit small-size packets (60 bytes

payload) to two different receiver (controller) nodes. In addition one PISA node will

be subject of FTP (File Transfer Protocol) upload and download from a dedicated

server, the file size is 101kbyte (50% send and 50% receive). Upload means file trans-

fer from PISA to FTP server, while download is the other way around. The specified

network speed was 100 Mbit/s, the FTP upload (from the tested node) starts at time =

100s and the FTP download (to the tested node) starts at time = 102s.

Figure 2 shows the resulting OPNET simulator setup. Both the PISAs as well as the

controllers are simulated using the predefined “Ethernet Advanced Workstation” ob-

ject (this object is closest to what we are trying to achieve). An important configura-

tion parameter is the IP processing rate, which has a significant impact on the applica-

tion-to-application delay. Initially this parameter is set to a default 5 000 packets/s for

the PISAs and 20 000 packets/s for the controllers (which means that the PISAs must

process one packet every 200 s and the controllers must process one packet every 50

 10

s). In the succeeding experiments we shall alter this parameter to analyze the impact

of using nodes with different computation power.

Most of the simulation application layers in OPNET tend to emphasize the client-

server or the request-response paradigms. Moreover, OPNET does not offer data ac-

quisition as a standardized application. Since we are focusing on this type of traffic

(which is more one-way in nature) we had to model it by ourselves. We settled for a

modified videoconference application to model the real-time traffic. This videocon-

ference can be configured for different traffic load in different directions and runs on

top of UDP, making it an excellent simulation vehicle for our purposes. In short, this

application layer allows us to specify the amount of UDP traffic to be generated, the

destination(s) of the packets etc.

Note that in a videoconference session, just as in SA applications, a packet going in

one direction is not a result of a packet going in the other direction. Thus a round trip

delay must be estimated as the sum of the delay in one direction, the delay in the other

direction plus an estimated reaction time in the controller. In this article we do not

consider the reaction time in the controller, thus we test if the round-trip delay is less

than 1 millisecond.

Discussing the simulated performance

Figure 3. The end-to-end delay for a packet at the application level

Figure 3 shows the simulation results for a session with 1440 packets per second from

the PISA to the controller and 10 packets per second from the controller to the PISA.

In both cases the data payload of the packet is 60 bytes. Two important components of

the system reaction time may be observed (considering the PISA subject of file trans-

fer):

1. The time it takes a measurement packet to travel from the measurement software

in the PISA to the application layer in the controller and

2. The corresponding time for a control packet to travel from the controller back to

the PISA.

We see that under normal circumstances (only real-time traffic is loading the net-

work), the delay from the PISA to the controller is just below 0.3ms and the delay the

other way is just above 0.3 ms, adding up to a total round-trip delay of about 0.6 ms.

PISA to controller

Controller to

PISA

 11

Under abnormal circumstances (heavy FTP traffic) the delay from the PISA to the

controller increases to about 0.85 ms (FTP upload), while the delay in the opposite

direction increases about 50 s (FTP download); adding up to a total round-trip delay

of less than 1.2 ms. The increase in latency from the controller to the PISA mostly

stems from additional protocol stack software involvement in FTP (upload) and be-

cause we now have coexisting UDP (carrying the time-critical data) and TCP traffic

in the controller’s transmit queue (which is a single FIFO queue at the Ethernet driver

level) competing about access to the network. This results in an increased mean delay

of the mission-critical packets (UDP packets may have to wait for transmission of

TCP packet bursts to complete).

For the controller-to-PISA communication there is also an increase in the end-to-end

delay on the Ethernet level of about 20 s, which otherwise is fairly constant at 19 s.

This increase stems from additional buffering delay in the switch due to the FTP traf-

fic (note that the controller-to-PISA data and the FTP traffic share the droplink to the

PISA). For the other way around there is no increase in the Ethernet latency, since the

FTP upload traffic from the PISA is not destined for the controller. To summarize,

this configuration does not fulfill the SA requirement of having an end-to-end re-

sponse time less than 1 millisecond under abnormal load conditions. The reason for

this is the vast latency through the protocol stacks. However, the end-to-end latency

requirement could have been met for this configuration if we had increased the IP

packet processing rate – in the succeeding section we shall alter this parameter to ana-

lyze the impact of using nodes with different computation power.

Simulating a Comprehensive Configuration

Having practiced simulation on the previous setup, the time has come to tackle a real-

istic setup for substation automation. Figure 4 shows the setup we decided on, consist-

ing of eight feeder bays and two transformer bays, as well as a Busbar unit, which is a

global control and protection unit receiving CT/VT data from all PISAs. Common for

all the bays is that most of the traffic stays within the bay, making them to an almost

perfect sub-network. Opposed to conventional multi-level architectures as discussed

in the introduction this configuration will apply Ethernet as a single medium for both

process and station/interbay communication.

Figure 4. The simulation setup for a normal feeder substation.

 12

A feeder bay consists of:

 3 CT (Current Transformer)/VT (Voltage Transformer) PISAs

 4 Distance Earth PISAs

 1 Fast Earth PISA (same communication specification as the Distance Earth

PISAs)

 1 Circuit Breaker PISA

 A Bay Controller, a Protection Unit and a Differential Protection Unit.

 One local Ethernet Switch

The traffic pattern of such a feeder bay is fairly complex, but the important data

streams follow the pattern mentioned earlier:

1. A high-speed stream of CT/VT data from the CT/VT PISAs to the local Bay Con-

troller, Protection Unit and Differential Protection Unit and to the global Busbar.

In this context the data-sampling rate was 1000 Hz, and where packet size is 32

bytes.

2. A medium speed stream of controller data to the Circuit Breaker PISA from the

same nodes at 250 Hz repetition rate and a data payload size of 16 bytes.

3. A low speed data exchange between all PISAs in a bay and the local Bay Control-

ler, Protection Unit and Differential Protection Unit. The repetition rate of these

data streams is 10 Hz and the data payload size is 32 bytes.

4. Each PISA in some of the bays does a file transfer
2
 – usually download, but one

PISA also does an upload (25% of the total FTP transfer). The file transfers take

place at different times and the file size is 1 Mbyte. In addition to this pattern, the

controller nodes request file download.

A transformer bay may have a different purpose, but the communication requirements

are very similar. Thus, for simulation purposes the transformer bay has the same traf-

fic pattern as a feeder bay.

In this set-up we specified PISAs with IP service rates of 10000 packets/s. The Busbar

node must handle a lot of packets and thus a service rate of 50000 packets/s was spec-

ified for that node (this means 20 s per packet - a Pentium 4 PC running Windows

XP at 3.0 GHz may just barely handle this packet speed).

The simulation results fall naturally into two classes, intrabay and interbay traffic. The

important intrabay delay (delay inside a bay) is the delay from the moment a meas-

urement is finished (CT/VT PISA) to the moment a trip command arrives at the cir-

cuit breaker (CB PISA). The simulations indicate a maximum delay from a CT/VT

PISA to the local Protection Unit of 160 µs and a maximum delay from the local Pro-

tection Unit to the circuit breaker of about the same (see Figure 5). Heavy FTP traffic

increases the delays with less than 20 µs.

The important interbay delay is the sum of the delay from a CT/VT PISA inside one

of the bays to the Busbar and from the Busbar to the CB-PISA inside one of the bays.

In our case the simulations indicate a maximum delay from a CT/VT PISA to the

Busbar (taken over all CT/VT PISAs) of about 180 µs and the maximum delay from

the Busbar back to the CB-PISAs of about 170 µs. Again, heavy FTP traffic increases

2
 After 2 seconds, U/I-PISA 1 requests a file download. After 4 seconds, U/I-PISA 2 sends a request.

This pattern proceeds through every PISA node in every bay. In addition to this pattern, the bay and

protection nodes request file downloads after 3 seconds.

 13

both delays, but the maximum value is less than 300 µs in both cases. Figure 6 shows

both delays; the small peaks are due to FTP download and the large peak is due to

FTP upload.

Discussing Delays

One of the reasons why interbay traffic is more affected by FTP transactions than

intrabay traffic is due to the shared cable between the Ethernet switch in the PISA and

the top-level Ethernet switch. At the application level, the FTP upload time is the crit-

ical one, because the UDP and TCP traffic classes coexist in (are scheduled from) one

single FIFO queue at the Ethernet driver level, resulting in increased delay of the

time-critical traffic (UDP packets may have to wait for transmission of TCP packet

bursts to complete). The problem of coexisting traffic classes in the station nodes is

discussed in section IV, where we propose a generic concept for introducing a priori-

tization mechanism into the protocol stacks in order to obtain predictable transfer end-

to-end. Though the delay varies under abnormal circumstances, this real configuration

based on switched Fast Ethernet is able to fulfill the SA requirement of having an

end-to-end response time less than 1 millisecond.

Local end-to-end UDP delays

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

Time (s)

D
e

la
y
 (

u
s

)

CT/VT to bay

Bay to CB

Figure 5. Intrabay end-to-end delays

Global end-to-end UDP delays

0

50

100

150

200

250

300

350

0 50 100 150

Time (s)

D
e
la

y
 (

u
s
)

CT/VT to Busbar

Busbar to CB

Figure 6. Global end-to-end delays.

Impact of the Processing Power

The excellent results above lead us to suspect that the high performance nodes might

have a large impact on the results. We therefore reran the simulations with the PISA

performance reduced to 5000 packets/s and the Busbar node performance was re-

duced to 40000 packets/s.

 14

Maximum delay from U/I PISA to Busbar

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160

Time (s)

D
e
la

y
 (

u
s
)

UDP level

Ethernet level

Figure 7. Global end-to-end delays with slower PISAs

Figure 7 shows the resulting delay between a U/I PISA and the busbar node. A com-

parison with Figure 6 shows that while the “steady-state” delay is of the same order of

magnitude, the transient behaviour is very bad. The peaks are due to FTP (upload)

transmission from a PISA, and show up in the same way on the local PISA-to-Bay

delays. Figure 7 also depicts the latency on the Ethernet level, being insignificant

compared to the end-node delays.

Remarks

The main conclusions from the simulations are:

 A switch-based Fast Ethernet network handles various Substation Automation

configurations under various load conditions with ease.

 The application end-to-end latency mainly stems from traversing the protocol

stacks. Thus, the protocol handling performance of the nodes has a dominating in-

fluence on the UDP end-to-end latency.

 UDP/IP as a real time protocol is able to meet the time requirements, but the end

nodes must be fairly high performance machines.

IV. Measuring End-to-End Latency
The Ethernet technology reached an important milestone on the road towards pre-

ferred automation behaviour with the introduction of the IEEE standard for traffic pri-

oritization [42]. One result of this standard is that it is possible to determine the worst-

case node-to-node latency across an 802.1D-compliant switched Ethernet network

[43], assuming knowledge about the queuing (scheduling) regime and the network

topology (diameter) [44]. Nevertheless, achieving a predictable application-to-

application transfer time has been hampered by the lack of ability to control the la-

tency within the end-nodes. We have already shown by simulation that most of the

end-to-end delay when using the IETF protocols UDP/TCP/IP is spent within the end-

nodes. This strongly pinpoints that a QoS mechanism should also be introduced in

those elements in order to have a controlled real-time stack processing time. In this

section we present such a QoS feature for an embedded environment and we further-

more evaluate it through real-world experiments. Before we present this concept let us

first generally discuss the inherent queuing problems of switched Ethernet network-

ing.

 15

Even Highways have Queues

Queues in the switches

The non-deterministic behavior of traditional switched Ethernet is caused by unpre-

dictable traffic patterns. At times packets from several input ports will be destined for

the same output port and some of them must perforce be queued up waiting for the

output port to be free. The reason is that at times there will be a lot of low-priority

traffic in the system (node status reports, node firmware update etc.). If we do not in-

troduce some sort of traffic rules, such a situation will give an unpredictable buffering

delay depending on the number of involved packets and their length. In worst case

packets can be lost when the amount of packets sent to an output port exceeds the

bandwidth of this port for a time period that is longer than the output buffer is able to

handle.

An automation network will have such co-existing real-time traffic (raw data, time

sync data, commands, etc.) and non-critical data (TCP/IP – file transfer, etc.). A max-

imum size packet (1518 bytes) represents an extra delay of 122 s for any following

queued packets in case of a 100 Mbps network. Though our previous substation au-

tomation experiments showed that for the assessed configurations the end-node delay

was the critical part, it is generally vital that Ethernet switches implement a concept

for service (traffic class) differentiation.

Queues in the nodes

Introducing traffic rules in the Ethernet switches will improve the worst-case latency

across the network (from the Ethernet controller in the source node to the Ethernet

controller in the destination node). Inside the node, however, there is usually only one

single network task, and just a single hardware queue associated with the Ethernet

controller. Since a network packet spends a large percentage of its total end-to-end

time inside a node, internal packet prioritization is needed in order to have maximal

control over the total packet transfer time (80-90% of the end-to-end message latency

is spent within the end nodes, at least when adhering to the IETF protocols

UDP/TCP/IP).

 For the transmit operation one typically could have a situation where multiple max

size Ethernet packets, for example fragments of an FTP transfer, queued up at the

Ethernet driver level. In a standard implementation, real-time packets will be add-

ed to the end of the queue. Such behavior will cause a non-predictable delay in

transmission (as we experienced in the simulation experiments).

 For the receive operation the protocol stack implementation represents a possible

bottleneck in the system. This is mainly due to the first-come first-served queue at

the protocol multiplexer level (the level where the network packets are routed to

the appropriate protocol handler software).

Introducing a Standard for Priority and Delivery

High Priority Packets Jump Ahead in Switch Queues

IEEE 802.1p has been introduced to alleviate the switch queue problem; moreover,

the standard specifies a layer-2 mechanism for giving mission-critical data preferen-

tial treatment over non-critical data. The concept has primarily been driven by the

multimedia industry [44] and is based on priority tagging of packets and implementa-

 16

tion of multiple queues within the network elements in order to discriminate packets.

IEEE 802.1p has more recently been incorporated as part of the IEEE 802.1D stan-

dard [43]. For tagging purposes IEEE 802.1Q [45] defines an extra field for the

Ethernet MAC header. This field is called Tag Control Info (TCI) field and is inserted

as indicated by Figure 8. This field contains 3 priority bits, thus the standard defines 8

different levels of priority.

Figure 8. MAC header (layer 2) with tag

High Priority Packets Get High Priority Treatment

A network data packet spends a relatively small percentage of its application-to-

application transfer time on the physical network. The actual percentage varies with

the speed of the network and the performance of the node, but for a 100 Mbit/s Fast

Ethernet, the average percentage is between 20% and 0.1%. For this reason, imple-

menting network priority will have little influence on the average application-to-

application transfer time (it will, however have a large influence on the worst-case

transfer time). In order to improve the application-to-application transfer time, the

concept of priority must be extended to include the protocol layers in both the sending

and receiving end. In order to accomplish this, we must consider:

 Several instances of the protocol stack software running at different priority levels

 Multiple transmit queues at the Ethernet driver level

Multiple Instances of the Protocol Stack Software

What we really want is to process high priority messages before low priority ones. In

fact, if we could suspend the processing of low priority network packets when a high

priority message arrives, we would have the perfect solution.

At first glance, there exists an ideal solution which can be described as follows:

1. At compile time, decide on the task priority that should correspond to each packet

priority and to an untagged packet. Create one task for each priority and put the

task IDs in a table.

2. When a packet arrives, extract the packet priority, use it with the task table de-

scribed above, send the packet to that task and send a signal to the task in order for

it to start processing.

The problem with this solution is that it supposes that the network software is reen-

trant, a condition which is seldom fulfilled. Rewriting the stack software to make it

reentrant is not hard, just tedious and time-consuming. Of course, it also means that

you have to support the rewritten software in the future.

 17

Running multiple instances of the protocol software may be the most elegant and effi-

cient solution, but be prepared to spend some time and resources on it.

 Multiple Receive Queues and Adjustable Priority

If we do not want to spend time and money on making the network software reentrant,

there is an alternative solution available. This solution does not suspend the pro-

cessing of lower priority packets, but selects the next packet to be processed from a

set of criteria based on the packet priority. An implementation example might be:

1. At compile time, decide on the task priority that should correspond to each packet

priority and to an untagged packet. Create one queue for each priority and put a

pointer to the queue in a table.

2. Whenever the network software is ready to process the next packet, it pulls all

packets from the input queue and distributes them to the priority queues.

3. When the input queue is empty, the priority selection algorithm is run. This algo-

rithm may be implemented in several different ways. We shall describe three dif-

ferent algorithms:

Algorithm A: Always pick the packet from the highest priority non-empty

queue.

Algorithm B: Pick the packet from the highest priority non-empty queue a cer-

tain number of times. Then move the first packet from each non-

empty queue to the next higher priority queue before picking the

packet from the highest priority non-empty queue again.

Algorithm C: Introduce a LOW flag and let it be initially reset. Wait for a

packet to appear in the highest priority queue or for the LOW flag

to be set. If the packet appeared in the highest priority queue, set

the LOW flag and process that packet. If the LOW flag was set,

reset it and process the packet from the highest priority non-empty

queue.

Implementing Multiple Transmit Queues

On a transmit request, a standard Ethernet driver takes a buffer, does some house-

keeping and transfers it to the Ethernet controller hardware. Such a driver is simple

and “fair” (first come, first served), but may be unsuitable for an efficient priority im-

plementation. One or more large low-priority packets, once they are scheduled for

transmission, will delay high-priority packets for the time it takes to transfer the low-

priority ones. If we want high priority packets to go to the head of the transmission

queue, and the hardware does not support multiple queues, we must do some priority

handling at the driver level.

The simplest solution is to use two queues, the hardware queue and a software queue.

Low priority packets go into the software queue, high priority packets go straight into

the hardware queue. From this point onward, there exist several algorithms addressing

different needs.

 If the real-time requirements are moderate, move the first packet in the software

queue to the hardware queue whenever the hardware queue is empty.

 18

 If the real-time requirements are strict, move the first packet in the software queue

to the hardware queue whenever a high priority packet has been placed in the

hardware queue.

An Implementation Example

Figure 9 shows how a non-optimized protocol stack would be implemented in a

VxWorks RTOS environment (VxWorks is used for illustration purposes only).

Figure 10 shows an example of a stack implementation that would cure most of the

queue problems of the standard implementation. The solution consists of introducing

a thin layer between the Ethernet controller driver and the protocol multiplexer. This

layer implements multiple queues for both transmit and receive. Firstly, all transmit

and receive packets are placed in a queue corresponding to their priority. Secondly, a

selection algorithm is implemented which selects the next packet to be passed to the

next layer whenever the node resources are able to handle it.

Protocol #1

Protocol multiplexer/demultiplexer

Ethernet controller driver

Protocol #2 Protocol #3

Figure 9. One example of a protocol stack implementation in a VxWorks environment.

Real time protocol IPARP

Protocol multiplexer/demultiplexer

Ethernet controller driver

Real Time Data Applications TCP, UDP, MMS etc.

Prioritization (multiple
send/receive queues)

Tag removal
on receive

Tag insertion
on transmit

Figure 10. An optimised implementation of priority tagging in a protocol stack

Testing a Prioritized Ethernet

Measurement Principle

Master test
node

Slave
test

node

Application level
message time stamping

Figure 11. Measuring application-to-application transmission delay

Measuring the total transmission delay from one application to another through a net-

work is no easy matter. Figure 11 shows the measurement principle we chose.

The measurement principle is fairly simple. It consists of generating a message at the

application level in the node to be tested (the “master test node”), time stamping it,

sending it to a companion test node (the “slave test node”) which immediately returns

the message and time stamping the returned message in the master test node. The dif-

 19

ference between the two time stamps represents the total message round trip delay,

and consists of:

1. The time spent in the master node transmit protocol stack and transmit buffers

2. The network delay from the master test node to the slave test node

3. The time spent in the slave node receive buffers and protocol stack

4. The time spent at the slave node application level creating the return message

5. The time spent in the slave node transmit protocol stack and transmit buffers

6. The network delay from the slave test node to the master test node

7. The time spent in the master node receive buffers and protocol stack

Since we are testing a switched Ethernet setup, the network delays can be further sub-

divided into:

a. Time spent across the transmitting node drop link

b. Time spent from the switch input port to the switch output port

c. Time spent in the switch output port buffers

d. Time spent across the receiving node drop link

For a given message size and a given switch, the delays a, b and d are independent of

any priority tagging and can be calculated. Delay c depends on the traffic into the re-

ceiving node and the priority of the measurement message.

Measurement Setup

Ethernet switchMaster test
node

Slave
test

node

FTP server Office
network

100Mbit/s

100Mbit/s

10Mbit/s

10Mbit/s

Figure 12. The complete measurement setup

Figure 12 shows the measurement setup. It contains the basic test elements from Fig-

ure 11 (master node, slave node and network) plus an FTP server (may be used as a

load generator) and a connection to a standard office network (used for controlling the

test and downloading the results).

Test Results

 Every measurement result set is based on 200 individual measurements.

 All measurement results are in microseconds.

Bugs and Annoyances

When running the tests, some unexpected annoyances surfaced and had to be dealt

with. These were:

a. A 3Com SuperStack 3 switch 3300 SM was originally used in the test, since this

switch was the most up-to-date on the market with respect to the implementation of

the GVRP (Generic Virtual Lane Registration Protocol) and GMRP (Generic Mul-

ticast Registration Protocol) protocols [45]. Unfortunately this switch was too

 20

smart for the test: it interpreted the tags correctly, but removed them before passing

the packets to the node under test. However, using a switch from OnTime Net-

works removed that problem [46].

b. The first version of the test program used the default task priority. This had the

unfortunate side effect of delaying the high priority packet generator whenever the

load generator was busy. Running the test program at a very high priority got rid

of that delay.

Baseline Measurements and Calculations

 The raw test message is 160 bytes long (168 if we include preamble and CRC).

 The drop link transmission time for the test message is 13.44 s at 100 Mbit/s

drop link speed and 134.4 s at 10 Mbit/s drop link speed.

 Since the internal port-to-port delay in the switch is negligible, this means that our

test message spends about 148 s on the drop links going from the master test

node to the slave and the same amount back again. This adds up to about 296 s

spent on the drop links for every roundtrip delay measurement.

 Baseline measurements (no FTP load) yielded a value of about 700 s for the

roundtrip delay measurement with a standard deviation of about 14 s.

 The standard deviation shows that we have a baseline variation between the meas-

urements. Several issues may contribute to this variation, the most significant is

probably high priority processes preempting the CPU resources.

Measurements using untagged packets

Table 1 shows the round-trip delays for untagged packets in the presence of FTP re-

ceive and transmit loads (for each case 4 test series based on 200 individual measure-

ments were conducted - the bottom row is the combined statistics). We see that the

delay is much more influenced by the transmit load than the receive load. This was to

be expected, since the Ethernet hardware transmit buffer may contain several full-size

packets whenever a measurement packet is scheduled for transmission. This fact also

shows up in the large standard deviation under transmit load.

Table 1. Measurements using untagged packets

Receive load Transmit load

Mean Std Max Min Mean Std Max Min

749.2 10.8 780.1 724.8 1097.6 96.9 1423.7 742.9

752.8 11.5 781.8 729.6 1103.9 96.0 1481.5 733.8

763.3 28.8 863.7 723.2 1089.8 85.8 1287.8 742.2

754.1 12.2 786.9 726.2 1081.9 95.7 1418.7 720.5

754.9 17.5 863.7 723.2 1093.3 93.7 1481.5 720.5

Measurements using tagged packets with no stack strategy

Table 2. Measurements using tagged packets with no internal priority queues

Receive load Transmit load

 21

Mean Std Max Min Mean Std Max Min

745.6 13.0 781.5 719.1 1094.1 94.7 1462.7 745.3

749.4 12.8 783.3 722.3 1102.3 89.1 1498.9 759.8

762.8 37.2 883.5 717.9 1085.4 114.0 1458.9 740.9

749.3 12.8 817.7 717.6 1081.1 102.3 1422.1 709.0

751.8 21.7 883.5 717.6 1090.7 100.4 1498.9 709.0

Table 2 shows the round-trip delays for priority tagged packets in the presence of FTP

receive and transmit loads (the bottom row is the combined statistics).

The results under both receive and transmit load are more or less identical to the re-

sults using untagged packets. A possible explanation is that the load is far below the

maximum bandwidth capacity of the switch, enabling the measurement packets to go

more or less directly to the measurement node whether or not the measurement pack-

ets are tagged.

Measurements using full priority queuing

Table 3. Measurements using tagged packets with receive and transmit priority queuing

Receive load Transmit load

Mean Std Max Min Mean Std Max Min

712.1 17.3 860.7 683.7 710.6 18.8 864.4 682.1

716.3 20.1 867.7 681.9 715.7 17.1 871.4 684.5

717.1 17.9 859.3 687.5 717.0 17.3 859.4 686.8

714.8 17.6 872.0 687.5 715.7 17.9 863.2 687.3

715.1 18.3 872.0 681.9 714.8 17.8 871.4 682.1

Table 3 shows what happens when we use priority queuing in both receive and trans-

mit situations (as usual, the bottom row is the combined statistics). We see a clear im-

provement in the standard deviation under transmit loads, due to the introduction of

the transmit priority queue. For the receive load case, on the other hand, we see only a

small change in the standard deviation compared to Table 2. This confirms our as-

sumption that intruding a receive priority queue not necessarily would improve the

jitter characterises (note that this jitter was low initially).

Measurement Conclusions

From the measurements we can provisionally conclude that:

 At 100 Mbit/s, the Ethernet switch fabric and the droplinks do not constitute a bot-

tleneck under FTP load.

 The main communication delays are inside the nodes. A suitable queue strategy

for high priority packets assures that those will be processed before low priority

packets.

 22

 If you want to implement internal priority queuing, either ensure that it is possible

to configure the chosen switch not to remove the priority tagging information or

deduce the priority from the packet header.

Remarks: Traffic Rules = Predictable Throughput

In this section we have addressed the issue of achieving application-to-application

predictable transfer time. The introduction of the IEEE 802.1D traffic prioritization

standard has made it possible to calculate the worst-case latency through a switched

Ethernet infrastructure. The assumption is that the real-time traffic pattern using the

high priority queues is known, including the number of forwarding switches, and that

the non-critical traffic uses lower priority; ground for a solution for taking control of

the latency in the end-nodes by introducing a QoS mechanism into the protocol

stacks. However, a missing link with respect to application-to-application determinis-

tic behaviour has been the ability to take control of the latency within the end-nodes

that may cause significant jitters. To alleviate this problem we have proposed a con-

cept for introducing a QoS mechanism into the protocol stacks. The solution is evalu-

ated through real world experiments with an embedded set-up showing a significant

evolution in the applicability of real-time Ethernet-based IP communication, which is

now adequate even to demanding automation applications.

V. Summary and Conclusions
We have postulated that the main latency and jitter in an industrial Ethernet system is

located in the end nodes. To that respect we have done a full scale detailed simulation

analysis of switched Ethernet in a very demanding automation system. The analysis

demonstrated that switched Ethernet using the TCP/UDP/IP protocol suite is actually

able to fulfill the real-time requirement posted by this demanding application (the

end-to-end response time was to be less than 1 millisecond), but also showed the im-

portance of high performance end nodes. The experiments showed that 80-90% of the

end-to-end message latency is spent within the station nodes.

We then focused on the priority mechanism from the IEEE 802.1D standard. By ex-

perimental measurements we have shown that in order to have fully end-to-end de-

terministic behaviour the priority concept must be extended to the end-nodes. An im-

plementation sketch of such an IEEE 802.1D based system in a real-time operating

system has been presented as well, and where real-world measurements show that the

end-to-end delay variations (the standard deviation) are decreased about 80% by this

concept. Our results show a significant evolution in the applicability of real-time

Ethernet-based IP communication, which is now adequate even to demanding auto-

mation applications.

VI. References
[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and Wen- King Su; Myrinet: a Gigabit-per-second Local Area Net-

work. IEEE MICRO, 1995.

[2] InfiniBand
TM

 Architecture Specification 1.0, October 2000 [Online]. Available

at: http://www.infinibandta.com

[3] Advanced Switching Interconnect Special Interest Group; PCI Express Ad-

vanced Switching Core Architecture Specification. Revision 1.0, December

2003.

http://www.infinibandta.com/

 23

[4] R. Seifert; The Switch Book: The Complete Guide to LAN Switching Technol-

ogy, John Wiley & Sons, Inc., 2000.

[5] IBM, “Migration to switched Ethernet LANs,” Technical report, 1998.

[6] J. Duato, S. Yalamanchilli, and L. Ni; Interconnection networks, an engineer-

ing approach. Morgan Kaufmann, 2003.

[7] EtherNet/IP [Online]. Available at: http://www.ethernet-ip.org/

[8] IDA (Interface for Distributed Automation) [Online]. Available at:

http://www.ida-group.org/

[9] Foundation Fieldbus High Speed Ethernet [Online]. Available at:

http://www.fieldbus.org/

[10] ETHERNET Powerlink [Online]. Available at: http://www.ethernet-

powerlink.com/

[11]

[12] Asynchronous Transfer Mode [Online]. Available at:

http://www.atmforum.com

[13] J.P. Georges, E. Rondeau, and T. Divoux; How to be sure that switched

Ethernet networks satisfy the real-time requirements of an industrial applica-

tion? Proceedings of the 2002 IEEE International Symposium on Industrial

Electronics, 2002. ISIE 2002, Volume: 1 , 8-11 July 2002 , Pages: 158 - 163

vol.1.

[14] J Jasperneite, P. Neumann, M. Theis, and W. Watson; Deterministic real-time

communication with switched Ethernet, 4th IEEE International Workshop on

Factory Communication Systems (WFCS), 2002., 28-30 Aug. 2002, Pages:11

– 18.

[15] J. Loeser and H. Haertig; Low-latency hard real-time communication over

switched Ethernet. Proceedings. 16th Euromicro Conference on Real-Time

Systems, ECRTS 2004, 30 June - 2 July 2004, Pages: 13 – 22.

[16] S.K. Kweon and K.G. Shin; Achieving real-time communication over Ether-

net with adaptive traffic-smoothing. In proceedings of 6
th

 IEEE conference on

Real-Time Technology and Applications Symposium, RTAS, Washington

D.C, May 2000.

[17] J.P. Georges, E. Rondeau, and T. Divoux; Evaluation of switched Ethernet in

and industrial context by using the network calculus, In proceedings of 4th

IEEE International Workshop on Factory Communication Systems (WFCS),

2002., 28-30 Aug. 2002, Pages: 19-26.

[18] R.L. Cruz; A calculus for network delay, Part I: network elements in isolation.

IEEE Transactions on Information theory, 37(1): 114-131, Jan. 1991.

[19] R.L. Cruz; A calculus for network delay, Part II: network analysis. IEEE

Transactions on Information theory, 37(1): 132-141, Jan. 1991.

[20] J.Y.L Boudec and P. Thiran. Network calculus, Springer Verlag, LNCS vol.

2050, July 2001.

[21] A. Koubaa and Y. Song; Evaluation and improvement of response time

bounds for real-time applications under non-preemptive fixed priority sched-

uling, International Journal of Production Research, Vol. 42, no. 14, pages:

2899-2913.

http://www.fieldbus.org/
http://www.atmforum.com/

 24

[22] B.Y. Choi, S. Song, N. Birch, and J. Huang; Probabilistic approach to

switched Ethernet for real-time control applications, In proceedings of 7
th

IEEE International Conference on Real-Time Computing Systems and Appli-

cations, 12-14 Dec. 2000, Pages: 384 – 388.

[23] L. Breslau, E.W. Knightly, S. Shenker, I. Stoica and H. Zhang; Endpoint ad-

mission control: architectural issues and performance, In Proceedings of the

International conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, 2000.

[24] C. Cetikaya and E.W. Knightly; Egress admission control, IEEE Infocom,

Pages: 1471-1480, vol. 3, 2000.

[25] S.A. Reinemo, F.O. Sem-Jacobsen, T. Skeie, and O. Lysne; Admission control

for DiffServ based quality of service in cut-through networks, In Proceedings

of the 10th International Conference on High Performance Computing (HiPC

2003), pp. 118-128, Hyderabad, India, December 17-20, 2003.

[26] F.O. Sem-Jacobsen, S.A. Reinemo, T. Skeie, and O. Lysne, Achieving flow

level QoS in cut-through networks through admission control and DiffServ, In

Proceedings of the 2004 International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA 2004), vol. 3, pp. 1084-

1090, Las Vegas, Nevada, USA, 2004.

[27] Y. Song, A. Koubaa, and F. Simonot; Switched Ethernet for real-time indus-

trial communication: modelling and message buffering delay evaluation, In

proceedings of 4th IEEE International Workshop on Factory Communication

Systems (WFCS), 2002, 28-30 Aug. 2002, Pages: 27-35.

[28] H. Hoang and M. Jonsson; Switched real-time Ethernet in industrial applica-

tions ï deadline partitioning, In proceedings of the 9
th

 Asian Pacific Confer-

ence on Communication, Penang, Malaysia, Sept. 2003.

[29] X. Fan, M. Jonsson, and H. Hoang; Efficient many-to-many real-time com-

munication using an intelligent Ethernet switch, In proceeding of the 7
th

 IEEE

International Symposium on Parallel Architectures, Algorithms and Networks

(ISPAN), 2004.

[30] C.L. Liu andJ.W. Layland; Scheduling algorithms for multiprogramming in

hard real-time environment, Journal of ACM, vol. 20(1), pages 46-61, 1973.

[31] M. Joseph and and P. Pandya; Finding response time in a real-time system,

BCS Computer Journal, vol. 29, no.5, pages 390-395, 1986.

[32] J.P. Lehoczky; Fixed priority scheduling of periodic task sets with arbitrary

deadlines, IEEE Real-Time System Symposium, pages 201-209, Los Alami-

tos, 1990.

[33] K.C. Lee and S. Lee; Performance evaluation of switched Ethernet for net-

worked control systems. In proceedings of IECON 02 - Industrial Electronics

Society, IEEE 2002 28th Annual Conference of the IEEE, pages 3170-3175,

2002.

[34] J. Jasperneite and P. Neumann; Switched Ethernet for factory communication.

In proceedings of 8
th

 IEEE conference on Emerging Technologies and Factory

Automation (ETFA), pages. 205-212, 2001.

[35] O. Dolejs and Z. Hanazalek; Simulation of Ethernet for real-time applica-

tions. In proceeding of IEEE International Conference of Industrial Technolo-

gy (ICIT), pages 1018-1021, 2003.

http://www.simula.no/people_publication.php?people_id=49&internal_people=y
http://www.simula.no/people_publication.php?people_id=342&internal_people=n
http://www.simula.no/people_publication.php?people_id=43&internal_people=y
http://www.simula.no/publication_one.php?publication_id=588
http://www.simula.no/publication_one.php?publication_id=588
http://www.simula.no/people_publication.php?people_id=342&internal_people=n
http://www.simula.no/people_publication.php?people_id=49&internal_people=y
http://www.simula.no/people_publication.php?people_id=43&internal_people=y
http://www.simula.no/publication_one.php?publication_id=648
http://www.simula.no/publication_one.php?publication_id=648

 25

[36] J. Wang and B. Ravindran; Time-utility function-driven switched Ethernet:

packet scheduling algorithm, implementation and feasibility analysis. IEEE

Transactions on Parallel and Distributed Systems. Vol. 15, no 2. 2004.

[37] L. Lo Bello, M. Lorefice, O. Mirabella, and S. Oliveri; Perforance analysis of

Ethernet networks in the process control. In proceeding of the 2000 IEEE In-

ternational Symposium on Industrial Electronics (ISIE), pages 655-660, 2000.

[38]

[39] IEC 61850 Communication Networks and Systems in Substations, Part 5:

Communication Requirements for Functions and Device Models CDV Feb.

2001, Part 7-2: Basic Communication Structure for Substations and Feeder

Equipment - Abstract Communication Service Interface (ACSI), CDV March

2001.

[40] T. Skeie, S. Johannessen, and C. Brunner; “Ethernet in Substation Automa-

tion”, IEEE Control Systems Magazine, 22(3): 43-51, June 2002.

[41] OPNET modeler [Online]. Available at: http://www.opnet.com

[42] T. Skeie, S. Johannessen, and Ø. Holmeide, “The Road to an End-to-End De-

terministic Ethernet”, In proceedings of 4
th

 IEEE International Workshop on

Factory Communication Systems (WFCS), September, 2002.

[43] IEEE 802.1D, Information Technology - Telecommunications and Infor-

mation exchange between systems – Local and Metropolitan Area Networks -

Communication Specification – Part 3: Media Access Control Bridges, 1998.

[44] Ø. Holmeide and T. Skeie, “VoIP drives realtime Ethernet,” Industrial Ether-

net Book, vol. 5, March 2001.

[45] IEEE Std 802.1Q-1998, IEEE Standards for Local and Metropolitan Area

Networks: Virtual Bridged Local Area Networks.

[46] OnTime Networks [Online]. Available at: http://www.ontimenet.com/

http://www.opnet.com/
http://www.ontimenet.com/

